Arithmetic and Geometric Progressions (AP/GP) Summary

1. Arithmetic Progression (AP) :

- characterized by a common difference d
$n t h$ term $T_{n}=a+(n-1) d$, where a is the first term of the series

Sum to n terms $S_{n}=\frac{n}{2}(a+l)$, where l denotes the last term of the series of n terms or $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad$ (to be used if value of l is not readily available)

2. Geometric Progression (GP) :

- characterized by a common ratio r
$n t h$ term $T_{n}=a r^{n-1}$, where a is the first term of the series
Sum to n terms $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
Note: If r is negative, then the sequence comprises terms alternating between positive and negative ones. Also, if $|r|<1$, then the series is a convergent one, ie $T_{n} \rightarrow k$ (k is a real value) as $n \rightarrow \infty$, and it possesses a sum to infinity given by $S_{\infty}=\frac{a}{1-r}$.

3. Techniques relevant to problem solving:

(i) Forming an equation relating three terms of a sequence.

If x, y and z are consecutive terms of an AP, then we have $y-x=z-y$

If x, y and z are consecutive terms of a GP, then we have $\frac{z}{y}=\frac{y}{x}$
(ii) Recognising that any uninterrupted part of a sequence will retain the main characteristics of its parent sequence:

Example: A descending geometric series has first term a and the common ratio r is positive. The sum of the first 5 terms is twice the sum of terms from the $6^{\text {th }}$ to $15^{\text {th }}$ inclusive.

While it is not erroneous to state that $S_{5}=2\left(S_{15}-S_{5}\right) \Rightarrow \frac{a\left(r^{5}-1\right)}{r-1}=2\left[\frac{a\left(r^{15}-1\right)}{r-1}-\frac{a\left(r^{5}-1\right)}{r-1}\right]$, it would be far more elegant to use the understanding that the $6^{\text {th }}$ to $15^{\text {th }}$ (10 terms altogether) terms of the GP can be construed as a separate GP series with first term $=a r^{6-1}=a r^{5}$ but with the same common ratio r as the parent series. Hence, we have

$$
\frac{a\left(r^{5}-1\right)}{r-1}=2\left[\frac{a r^{5}\left(r^{10}-1\right)}{r-1}\right],
$$

which would render future developments of any solution a tad more efficient.

(iii) The bank interest problem (and its parallel storylines):

Example: At the end of a month, a customer owes a bank $\$ 1500$. In the middle of the month, the customer pays $\$ x$ to the bank where $\mathrm{x}<1000$, and at the end of the month the bank adds interest at a rate of 4% of the remaining amount still owed. This process continues every month until the money owed is repaid in full.
(i) Find the value of x for which the customer still owes $\$ 1500$ at the start of every month.
(ii) Find the value of x for which the whole amount owed is paid off exactly after the second payment.
(iii) Show that the value of x for which the whole amount owed is paid off exactly after the $(n+1)$ th payment is given by

$$
x=\frac{1500 r^{n}(r-1)}{r^{n+1}-1}, \text { where } r=1.04
$$

SOLUTIONS :

(i) $1500=(1500-x)(1.04) \Rightarrow x=\$ 57.69$ (shown)
(ii) After $1^{\text {st }}$ payment of $\$ x$, the amount owed $=(1500-x)(1.04)$

Therefore, $(1500-x)(1.04)=x \Rightarrow x=\$ 764.71$ (shown)
(iii) After the second payment of $\$ x$, amount owed at beginning of $3^{\text {rd }}$ month is

$$
[(1500-x) 1.04-x](1.04)=1500(1.04)^{2}-1.04^{2} x-1.04 x
$$

After the second payment of $\$ x$, amount owed at beginning of 4th month is

$$
\begin{aligned}
& {\left[1500(1.04)^{2}-1.04^{2} x-1.04 x-x\right](1.04)} \\
& =1500(1.04)^{3}-1.04^{3} x-1.04^{2} x-1.04 x
\end{aligned}
$$

After $n t h$ payment of $\$ x$, the amount still owed at the beginning of the $(n+1)$ th month
$=1500(1.04)^{n}-1.04^{n} x-1.04^{n-1} x-\ldots-1.04^{2} x-1.04 x$
$=1500 r^{n}-x\left(r+r^{2}+\ldots \ldots . .+r^{n}\right) \quad$ where $r=1.04$

At the $(n+1)$ th payment,
$x=1500 r^{n}-x\left(r+r^{2}+\ldots \ldots . .+r^{n}\right)$
$x\left(1+r+r^{2}+\ldots . .+r^{n}\right)=1500 r^{n}$
$\Rightarrow x\left(\frac{r^{n+1}-1}{r-1}\right)=1500 r^{n} \Rightarrow x=\frac{1500 r^{n}(r-1)}{r^{n+1}-1}$ (shown)

Strategies to note in the above solution:

(a) Consolidation of values is highly discouraged when seeking out patterns in expressions, eg for (iii) of the immediate above problem, leave $1500(1.04)^{2}$ in its raw form, and do not simplify it as 1622.4.
(b) Exercise patience and write a few iterations applicable to various time frames, ie the outstanding amounts say after 1 month, 2 months, 3 months, etc or 1 year, 2 years, 3 years etc depending on the question context. From there, attempt to identify a trend/pattern within these formulations.
(c) Be acutely aware of the exact occurrences of events in reference to the timeline of the question, eg whether interest is appended at the beginning or end of a designated period, whether payment is made in the middle or the end of the period etc.

(iv) Transforming a GP into an AP (or vice versa):

This usually includes index operations or inclusion of logarithmic changes to every existing term of the original series.

Example: A geometric series $\left\{x_{n}\right\}$ has first term a and common ratio r. The sequence of numbers $\left\{y_{n}\right\}$ satisfies the relation $y_{n}=\log _{3} x_{n}$ for $n \varepsilon Z, n \geq 1$.
(i) If the product of x_{5} and x_{16} is 81 , find the value of $\sum_{k=1}^{20} \log _{3} x_{k}$.
(ii) Show that $\left\{y_{n}\right\}$ is an arithmetic sequence.

SOLUTIONS :

(i) $x_{5}=a r^{4}, x_{16}=a r^{15}$

$$
x_{5} x_{15}=81 \Rightarrow a^{2} r^{19}=81
$$

$$
\sum_{k=1}^{20} \log _{3} x_{k}=\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3}+\ldots \ldots \ldots+\log _{3} x_{20}
$$

$$
=\log _{3}\left(x_{1} x_{2} x_{3} \ldots \ldots \ldots x_{20}\right)
$$

$$
=\log _{3}\left[\left(x_{1} x_{20}\right)\left(x_{2} x_{19}\right) \ldots \ldots \ldots\left(x_{10} x_{11}\right)\right]
$$

$$
=\log _{3}[(81)(81) \ldots \ldots .(81)]
$$

$$
=\log _{3} 81^{10}=10 \log _{3} 81=10(4)=40(\text { shown })
$$

(Note: $x_{1} x_{20}=x_{2} x_{19}=\ldots \ldots . .=x_{10} x_{11}=a^{2} r^{19}=81$)
(ii) $y_{n}-y_{n-1}=\log _{3} x_{n}-\log _{3} x_{n-1}=\log _{3}\left(\frac{x_{n}}{x_{n-1}}\right)=\log _{3} r$, which is a constant.

Hence, $\left\{y_{n}\right\}$ is an arithmetic sequence.(shown)

